

EEC, la propuesta de **motores brushless** de **imanes** permanentes de Casals Ventilación. La utilización de esta tecnología en ventiladores aporta **grandes ventajas** como la mejora de la eficiencia, disminución de ruido, escaso mantenimiento, incremento de la vida útil de la máquina, un mayor control y simplificación del producto.

DIFERENCIAS CONSTRUCTIVAS

MOTOR TRADICIONAL	MOTOR EEC
Requiere más volumen de chapa para poder crear el campo magné- tico y potencia	Al tener imanes de alta energía nos permite ahorrar en volumen de chapa
Un 30% de las pérdidas son del rotor	Las pérdidas son prácticamente nulas, lo que permite que el motor sea hasta un 75% más pequeño y más eficiente
Bobinado (estator) de cobre	Menos cobre en bobinado y por tanto más ahorro en producción
No necesita controlador para fun- cionar. Habitualmente sólo tiene una velocidad	Necesita un controlador electró- nico y el mismo conjunto (motor + controlador) permite múltiples velocidades

CONCEPTO ELECTRÓNICO

Los EEC trabajan de forma parecida a un variador de frecuencia aunque adaptando la onda PWM (pulse width modulation) a las necesidades del ventilador.

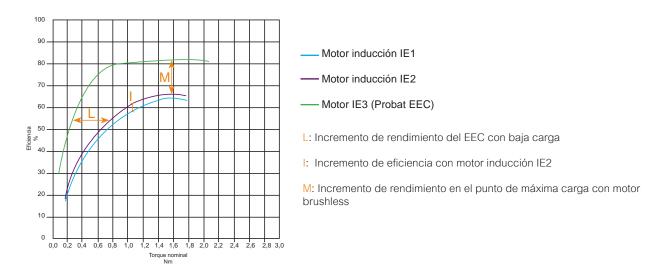
Este tipo de electrónica permite ajustar la velocidad del motor a cualquier valor. Esto hace posible que el conjunto trabaje a distintos regímenes de velocidad, dando lugar a un área o mapa de trabajo caudal – presión. Con los motores tradicionales de inducción sólo se trabaja a una velocidad y por tanto, una única curva.

VERSATILIDAD

Al tener un amplio margen de trabajo, el ventilador es más adaptable a las aplicaciones para las cuales está destinado.

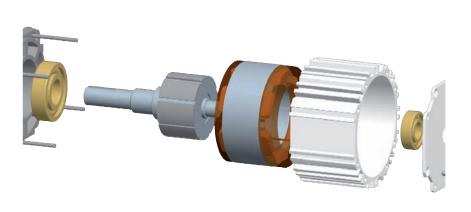
FLEXIBILIDAD

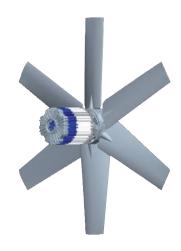
Al poder tener cada modelo múltiples aplicaciones, la cifra de modelos a producir se simplifica, es decir, se reduce el stock.


GRAN CONTROL

Posibilidad de conectar sensores de caudal y de presión para que el ventilador responda según los datos captados.

DISMINUCIÓN DE VOLUMEN Y MAYOR EFICIENCIA


El uso de imanes permanentes de elevada energía permite reducir el volumen del conjunto motor de forma considerable hasta un 75%.


Reduciendo el tamaño de motor para una misma potencia, conseguimos optimizar el rendimiento global de la máquina, es decir, entregamos mayor potencia de gas (caudal x presión) para una misma potencia eléctrica consumida.

COMPACTADO DEL MOTOR Y PROTECCIÓN

En este tipo de motores, el 90% de las pérdidas se generan en el estator. En los EEC realizamos una compactación del bobinado con resina, dando lugar a una disipación del calor mucho más rápida y uniforme. Esto se traduce en un incremento de la vida del motor.

¿Qué ofrece la tecnología EEC de Casals?

Un incremento totalmente contrastado en eficiencia energética

Los sistemas actuales basados en motores de inducción disponen de eficiencias de nivel IE2 dando dificultades en dimensiones y costes para niveles IE3. Con las nuevas tecnologías basadas en imanes permanentes los motores alcanzan fácilmente valores de eficiencia de IE3 y cabe destacar también que uno de los parámetros más importantes es ésta elevada eficiencia mantenida un amplio rango de carga de trabajo permitiéndose así obtener ésta elevada eficiencia a diferentes velocidades y pares de trabajo. Otro parámetro derivado del tipo de tecnología es la reducción importante referente al ruido electromagnético y las vibraciones del propio motor.

Reducción del volumen motor

El hecho de trabajar con materiales magnéticos de elevada energía como son los imanes basados en tierras raras como el Neodimio Hierro-Boro nos permite disponer de valores de inducción elevados con un volumen muy inferior del resto de tecnologías del mercado, con lo que nos da lugar a un peso de materia prima más reducido y una mejora de la adaptabilidad del la máquina de tracción. La reducción del diámetro del motor nos permite obtener una mejor eficiencia del trabajo de la hélice o turbina con lo que a la vez reducimos la potencia requerida y por tanto la eficiencia del ventilador en conjunto.

Simplificación de componentes (segunda fase)

El hecho de poder conformar fácilmente el elemento rotórico basado en imanes permanentes da lugar a poder integrar el propio motor en los propios componentes del ventilador con lo que obtenemos un menor número de componentes que conforman la máquina (Hélice – Imán – Laminado – Cobre – Aislamiento - soporte motor - ventilador), traduciéndose en una menor gestión productiva y mayor fiabilidad del producto. Aunque en nuestra primara fase de la tecnología motor mantenemos el motor con eje independiente de la hélice o turbina ya hemos integrado el conjunto motor controlador con la que abrimos ya el camino hacia la integración total del motor en el ventilador.

Compactado del motor, mejora sustancial de la vida y apto para ambientes agresivos

El compactado con resina del bobinado de estator, dónde se genera el 90% de la pérdidas del motor en este tipo de motores, da lugar a una disipación del calor mucho más elevada y al mismo tiempo una protección total para ambientes agresivos o traduciéndose también a un incremento de la vida del motor.

Facilidad de unificación de motores en la gama de ventiladores

Con el estudio de la gama de pares y velocidades que se requieren, esta tecnología motor permite una optimización muy elevada respecto a la gama de motores actuales que se utilizan, Gran facilidad de unificación de potencias y dimensiones lo que se traduce en una mejora en servicio y coste logístico.

Controlador del motor-ventilador

Éste tipo de motores se dispone con su controlador electrónico para poder funcionar, controlando en cada momento la velocidad y carga del ventilador. El hecho de poder disponer del control de velocidad da la posibilidad de poder abarcar un amplio rango de trabajo de la hélice o turbina con lo que ya no estaremos de una curva de trabajo del ventilador sino de un conjunto de curvas a diferentes velocidades con lo que pasamos a definir el ventilador con áreas de trabajo y no con curvas, este punto nos confiere dos ventajas importantes :

- · Mejor adaptabilidad del ventilador al circuito de carga o aplicación.
- Menor número de modelos para un mismo fin o aplicación.

El control de la velocidad junto con el conocimiento de la carga del ventilador nos permite conocer el punto de trabajo y modificarlo a un nuevo punto según los requerimientos que queremos tanto manualmente como automáticamente con sensores exteriores, con lo que confiere una gran cantidad posibilidades en todas las aplicaciones y especialmente las que requieran un control de presión o caudal del aire así como una optimización del punto de consumo o eficiencia del conjunto.

Datos de eficiencia

EEC 80

900 RPM					
RPM	P1 (W)	P2 (W)	Effm (%)	IL (A)	Efft (%)
900	59,0	50,9	86,3	0,61	82,1
900	114,0	98,0	86,0	1,04	82,4
900	174,0	145,1	83,4	1,49	81,1
900	238,0	192,3	80,8	1,94	78,2
900	306,0	239,4	78,2	2,39	76,0
900	381,0	286,5	75,2	2,92	72,7
900	461,0	333,6	72,4	3,46	70,2
900	550,0	380,8	69,2	4,02	67,3
900	766,0	475,0	62,0	5,42	60,0
900	1102,0	569,3	51,7	7,50	49,5

1350 RPM					
RPM	P1 (W)	P2 (W)	Effm (%)	IL (A)	Efft (%)
1350	92,0	80,6	87,6	0,86	84,8
1350	168,0	151,3	90,0	1,43	89,0
1350	252,0	222,0	88,1	2,02	86,0
1350	338,0	292,6	86,6	2,62	84,1
1350	432,0	363,3	84,1	3,22	82,2
1350	526,0	434,0	82,5	3,83	80,1
1350	632,0	504,7	79,9	4,52	78,2
1350	741,0	575,4	77,6	5,24	75,5
1350	894,0	646,1	72,3	6,14	70,6

2000 RPM					
RPM	P1 (W)	P2 (W)	Effm (%)	IL (A)	Efft (%)
2000	78,0	69,1	88,6	0,78	86,4
2000	137,0	121,5	88,7	1,21	86,8
2000	191,0	173,8	91,0	1,59	89,6
2000	248,0	226,2	91,2	1,99	89,8
2000	365,0	330,9	90,7	2,77	88,7
2000	482,0	435,6	90,4	3,49	89,1
2000	594,0	540,4	91,0	4,21	89,3
1900	714,0	612,8	85,8	4,93	83,9

Punto de máxima eficiencia del motor EEC
Zona no recomendable de uso

P1 (W)	Potencia eléctrica		
P2 (W)	Potencia mecánica		
Effm (%)	Eficiencia motor		
IL (A)	Intensidad de línea		
Efft (%)	Eficiencia total (motor + electrónica)		

Datos de eficiencia

EEC 130

900 RPM					
RPM	P1 (W)	P2 (W)	Effm (%)	IL (A)	Efft (%)
900	113,0	98,2	86,9	1,06	86,9
900	219,0	192,4	87,9	1,79	86,7
900	324,0	286,7	88,5	2,52	85,3
900	431,0	380,9	88,4	3,25	85,6
900	667,0	569,4	85,4	4,77	82,5
900	916,0	757,9	82,7	6,44	79,4
900	1193,0	946,4	79,3	8,12	75,7
900	1530,0	1134,9	74,2	10,10	71,1
900	1857,0	1323,4	71,3	12,36	67,6

1400 RPM					
RPM	P1 (W)	P2 (W)	Effm (%)	IL (A)	Efft (%)
1400	192,0	162,3	84,5	1,62	84,5
1400	345,0	308,9	89,5	2,64	88,0
1400	501,0	455,5	90,9	3,71	89,5
1400	663,0	602,1	90,8	4,76	88,8
1400	995,0	895,3	90,0	6,81	87,6
1400	1345,0	1188,5	88,4	8,97	85,5
1400	1733,0	1481,8	85,5	11,36	82,4
1400	1873,0	1599,0	85,4	12,27	81,3
1400	1940,0	1628,4	83,9	12,42	81,3

2000 RPM					
RPM	P1 (W)	P2 (W)	Effm (%)	IL (A)	Efft (%)
2000	158,0	122,4	77,5	1,33	77,5
2000	266,0	227,1	85,4	2,07	86,0
2000	479,0	436,5	91,1	3,49	90,8
2000	711,0	646,0	90,9	4,99	89,7
2000	922,0	855,4	92,8	6,18	91,6

Punto de máxima eficiencia del motor EEC
Zona no recomendable de uso

P1 (W)	Potencia eléctrica	
P2 (W)	Potencia mecánica	
Effm (%)	Eficiencia motor	
IL (A)	Intensidad de línea	
Efft (%)	Eficiencia total (motor + electrónica)	

COSTE DE EXPLOTACIÓN

Comparación entre un motor convencional y un EEC con potencia nominal 0,55kw. En el cálculo se han considerado el motor en función de 12h diarias durante 300 días al año.

Potencia Nominal (kW)	Eficiencia motor convencional	Eficiencia motor EEC 80
0,55	60%	83%

Potencia eléctrica = Eficiencia motor x Potencia nominal

Potencia eléctrica (kW)	Consumo anual (€)
0,663	382
0,917	528

Precio aprox. in € por Kw: 0,15

En este caso particular el ahorro anual que supone montando un motor electrónico EEC respecto a un motor convencional es 146€.

Tiempo de amortización para motor sin variador de frecuencia:

Potencia Nominal (kW)	PVP Motor conven- cional	PVP Motor EEC	Ahorro anual (€)	Tiempo amortización (años)
0,55	170	630	146	3,14

Tiempo de amortización para motor con variador de frecuencia (inverter):

Potencia Nominal (kW)	PVP Motor con- vencional	PVP Variador de frecuencia	PVP Motor EEC	Ahorro anual (€)	Tiempo amortiza- ción (años)
0,55	170	345,80	630	146	0,78

En este ejemplo se ha comparado un motor EEC de 0,55kw con un motor convencional y un motor convencional + inverter de igual potencia nominal. En poco más de 3 años se amortiza el precio en el primer caso, y en menos de un año en el segundo caso.

